Modeling biofilms with dual extracellular electron transfer mechanisms.

نویسندگان

  • Ryan Renslow
  • Jerome Babauta
  • Andrew Kuprat
  • Jim Schenk
  • Cornelius Ivory
  • Jim Fredrickson
  • Haluk Beyenal
چکیده

Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as terminal electron acceptors for their metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce the requisite components for both mechanisms. In this study, a generic model is presented that incorporates the diffusion- and the conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to S. oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found in the literature. Our simulation results show that (1) biofilms having both mechanisms available, especially if they can interact, may have a metabolic advantage over biofilms that can use only a single mechanism; (2) the thickness of G. sulfurreducens biofilms is likely not limited by conductivity; (3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and (4) the local biofilm potential and redox potential are two distinct parameters and cannot be assumed to have identical values. Finally, we determined that simulated cyclic and squarewave voltammetry based on our model are currently not capable of determining the specific percentages of extracellular electron transfer mechanisms in a biofilm. The developed model will be a critical tool for designing experiments to explain EET mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular Electron Transfer Mechanism in Shewanella loihica PV- 4 Biofilms Formed at Indium Tin Oxide and Graphite Electrodes

Extracellular electron transfer mechanism in Shewanella loihica PV4 biofilms formed at indium tin oxide and graphite electrodes. Journal Article How to cite: Jain, Anand; O Connolly, Jack; Woolley, Richard; Krishnamurthy, Satheesh and Marsili, Enrico (2013). Extracellular electron transfer mechanism in Shewanella loihica PV4 biofilms formed at indium tin oxide and graphite electrodes. Internati...

متن کامل

Redox Conductivity of Current-Producing Mixed Species Biofilms

While most biological materials are insulating in nature, efficient extracellular electron transfer is a critical property of biofilms associated with microbial electrochemical systems and several microorganisms are capable of establishing conductive aggregates and biofilms. Though construction of these conductive microbial networks is an intriguing and important phenomenon in both natural and ...

متن کامل

Isolation, Identification and Characterization of an Electrogenic Microalgae Strain

Extracellular electron transfer involving microbes is important as it closely reflects the ability of cells to communicate with the environment. However, there are few reports on electron transfer mechanisms of pure microalgae and a lack of any model alga to study the transfer processes. In the present study, nine green microalgae species were isolated from wastewater and characterized in terms...

متن کامل

Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer†

Geobacteracea are distinct for their ability to reduce insoluble oxidants including minerals and electrodes without apparent reliance on soluble extracellular electron transfer (ET) mediators. This property makes them important anode catalysts in new generation microbial fuel cells (MFCs) because it obviates the need to replenish ET mediators otherwise necessary to sustain power. Here we report...

متن کامل

Multistep hopping and extracellular charge transfer in microbial redox chains.

Dissimilatory metal-reducing bacteria are microorganisms that gain energy by transferring respiratory electrons to extracellular solid-phase electron acceptors. In addition to its importance for physiology and natural environmental processes, this form of metabolism is being investigated for energy conversion and fuel production in bioelectrochemical systems, where microbes are used as biocatal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 44  شماره 

صفحات  -

تاریخ انتشار 2013